4 Weak solutions of conservation laws and the jump
conditionsTop3 Finite volume method for the numerical solution of the
flat-bottom caseReferences

Contents

Index

References

[1]
H. Capart and D.L. Young. Formation of a jump by the dam-break wave over a granular bed. J. Fluid Mech., 372:165-187, 1998.
[2]
T. Buffard, T. Gallouet, and J.-M. Hérard. Un schéma simple pour les équations de Saint-Venant. C. R. Acad. Sci. Paris, t. 324, Série I:385-390, 1998.
[3]
J.M. Townson. Free-surface hydraulics. Unwin Hyman, 1991.
[4]
S.S. Voit. Tsunamis. Annu. Rev. Fluid Mech., 19:217-236, 1987.
[5]
J. Smoller. Shock waves and reaction diffusion equations. Springer, 1983.
[6]
P.D. Lax. Hyperbolic systems of conservation laws and the mathematical theory of shock waves. CBMS Monographs. SIAM, Philadelphia, 1973.
[7]
C.G. Hirsch. Numerical computation of internal and external flows. J. Wiley, 1990.
[8]
S. Godunov, A. Zabrodine, M. Ivanov, A. Kraiko, and G. Prokopov. Résolution numérique des problèmes multidimensionnels de la dynamique des gaz. Editions MIR, Moscou, 1979.
[9]
P.L. Roe. Approximate Riemann solvers, parameter vectors, and difference schemes. J. Comput. Phys., 43:357-372, 1981.
[10]
P. Glaister. A weak formulation of Roe's approximate Riemann solver applied to the St. Venant equations. J. Comput. Phys., 116:189-191, 1995.
[11]
L. Combe and J.-M. Hérard. Un schéma volumes finis pour la simulation d'un modèle bi-fluide d'écoulements diphasiques compressibles gaz-solide. Revue Européenne des Eléments finis, 5(2):197-231, 1997.
[12]
G. Brun, J.-M. Hérard, D. Jeandel, and M. Uhlmann. An approximate Riemann solver for second-moment closures. J. Comput. Phys., 151(2):990-996, 1999.
[13]
G.B. Whitham. Linear and nonlinear waves. Wiley, 1974.
[14]
P. Garcia-Navarro, M.E. Hubbard, and A. Priestley. Genuinely multidimensional upwinding for the 2d shallow water equations. J. Comput. Phys., 121:79-93, 1995.
[15]
A. Bermudez and M.E. Vazquez. Upwind methods for hyperbolic conservation laws with source terms. Computers & Fluids, 23(8):1049-1071, 1994.
[16]
J.M. Greenberg and A.Y. Leroux. A well-balanced scheme for the numerical processing of source terms in hyperbolic equations. SIAM J. Num. Anal., 33(1):1-16, 1996.

markus.uhlmann AT ciemat.es


4 Weak solutions of conservation laws and the jump
conditionsTop3 Finite volume method for the numerical solution of the
flat-bottom caseReferencesContentsIndex